Collection: Navier–Stokes Equations
In physics, the Navier–Stokes equations are a set of partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes.
The Navier–Stokes equations mathematically express conservation of momentum and conservation of mass for Newtonian fluids. They are sometimes accompanied by an equation of state relating pressure, temperature and density. They arise from applying Isaac Newton’s second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow.
The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are a parabolic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g. they are never completely integrable).
The Navier–Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations, in their full and simplified forms, help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with Maxwell’s equations, they can be used to model and study magnetohydrodynamics.
The Navier–Stokes equations are also of great interest in a purely mathematical sense. Despite their wide range of practical uses, it has not yet been proven whether smooth solutions always exist in three dimensions – i.e. they are infinitely differentiable (or even just bounded) at all points in the domain. This is called the Navier–Stokes existence and smoothness problem.
The Clay Mathematics Institute has called this one of the seven most important open problems in mathematics and has offered a million dollar prize for a solution or a counterexample.
-
Navier-Stokes Long Sleeve Fitted Crew
- Regular price
- from $24.50 USD
- Sale price
- from $24.50 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Unisex Viscose Hemp T-shirt
- Regular price
- $32.00 USD
- Sale price
- $32.00 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Fanny Pack
- Regular price
- $35.00 USD
- Sale price
- $35.00 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Unisex Fleece Sweatpants
- Regular price
- from $38.00 USD
- Sale price
- from $38.00 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes 3/4 Sleeve Raglan Shirt
- Regular price
- from $21.50 USD
- Sale price
- from $21.50 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Embroidered Beanie
- Regular price
- $19.50 USD
- Sale price
- $19.50 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Unisex Hoodie
- Regular price
- from $36.50 USD
- Sale price
- from $36.50 USD
- Regular price
-
- Unit price
- per
Sold out -
Navier-Stokes Long Sleeve Fitted Crew
- Regular price
- from $24.50 USD
- Sale price
- from $24.50 USD
- Regular price
-
- Unit price
- per
Sold out